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Acoustic crystal thermodynamic integration method

Paul D. Beale*
Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309

~Received 21 March 2002; published 25 September 2002!

The acoustic crystal thermodynamic integration method is a generalization of the Einstein crystal method
developed by Frenkel and Ladd. The name is derived from the acoustic branches of the phonon spectrum of the
reference system. The method is designed to calculate the Helmholtz free energy of classical solid phases using
Monte Carlo or molecular dynamics simulations. It has several advantages over the Einstein crystal method.
For large systems, the Einstein crystal method suffers from very long correlation times near the zero coupling
limit because the reference system breaks the overall translational symmetry of model systems. The acoustic
crystal method does not break translational symmetry, so correlation times for the acoustic crystal are small.
This makes the acoustic crystal method superior to the Einstein crystal method for large system sizes. Also the
acoustic crystal method does not artificially introduce long-range order in low-dimensional systems.

DOI: 10.1103/PhysRevE.66.036132 PACS number~s!: 05.10.Ln, 05.20.2y, 05.70.Ce, 64.10.1h
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I. INTRODUCTION

Monte Carlo@1# and molecular dynamics@2# simulation
methods are widely used to calculate thermodynamic pr
erties of the solid and liquid phases of model systems
interacting particles. These methods are very useful for
termining the properties of the liquid and solid phases
models but, because of hysteresis, are not particularly
suited for determining the location and properties of
melting transition. The location of a first-order melting lin
can be determined using Maxwell’s double tangent const
tion if the free energy densities of the solid and liquid pha
are both known. Simulation methods at a single point in
phase diagram such as variants of the Widom particle in
tion method@2# can determine the free energy at that poi
but they are generally not useful in high density solid pha
because of the extremely low probability of successful p
ticle insertion. The alternative is to use a sequence of si
lations to determine the free energy difference between
point in the phase diagram of the model system and
known free energy of a reference system. The free ene
difference is given by a thermodynamic integration along
reversible path between the model system and the refer
system. This paper describes a method for calculating
free energy of solid phases in classical statistical mecha
by a thermodynamic integration to a reference system wh
particles are harmonically coupled to their nearby neighb
This method is a generalization of the Einstein crys
method developed by Frenkel and Ladd@2–4#. Like Frenkel
and Ladd’s method, this method works for both hard and s
interaction potentials. Other thermodynamic integrat
methods@2,5# work well for soft potentials.

The acoustic crystal thermodynamic integration meth
has several advantages over the Einstein crystal method

~1! The acoustic crystal Hamiltonian is invariant to a un
form translation of the entire system. The Einstein crys
method breaks the overall translational symmetry.

~2! The breaking of translational symmetry in the Einste
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crystal method imposes long-range translational order on
system for all nonzero couplings. This is important in lo
dimensions (d<2) where model systems do not displa
long-range translational order@6#. Because of this, the ther
modynamic integration integrand in the Einstein crys
method is divergent in the thermodynamic limit at zero co
pling. Therefore many points are needed near the zero c
pling limit to calculate the integral accurately.

~3! The Einstein crystal method requires the use of
ensemble in which the center of mass of the system is fi
in order to deal with the translational symmetry breaking t
occurs for nonzero coupling. This does not add significan
to the complexity of a calculation, but it is not necessary
the acoustic crystal method.

~4! The Einstein crystal method suffers from long Mon
Carlo correlation times~of order L2 where L is the linear
dimension of the crystal! at small coupling. While the center
of-mass ensemble effectively deals with the zero wa
vector modes, many long wavelength~small wave-vector!
modes remain. The difference between the Einstein cry
method and the acoustic crystal method is due to differen
in the classical phonon spectra of the reference systems.
spectrum of the Einstein crystal has frequenciesvk,s that are
independent of wave vector, whereas the spectrum of
acoustic crystal consists of acoustic branches that vanish
early as wave vectork→0. For small coupling, the smal
wave-vector modes of the model system evolve slowly d
to correlated diffusive motion on length scales of order 1k.
This results in energy-energy correlation times of orderL2 at
small coupling. By contrast, the acoustic crystal correlat
time is independent ofL at small coupling because the co
tribution to the energy of those modes vanishes ask→0.

One disadvantage of the acoustic crystal method co
pared to the Einstein crystal method is the added comple
of calculating the acoustic crystal harmonic energy compa
to the simpler Einstein crystal energy. This extra effort
justified for large systems because of the increased accu
attainable in the acoustic crystal method due the smaller
relation times. The acoustic crystal method also requires
to diagonalize the dynamical matrix to determine the fr
energy of the reference system at large coupling. The
©2002 The American Physical Society32-1
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namical matrix diagonalization for the Einstein crystal
trivial. The calculation of the acoustic crystal phonon fr
quencies is straightforward if the reference system has c
talline order. Otherwise, the method requires one comp
numerical eigenvalue decomposition of theNd3Nd dy-
namical matrix.

II. METHOD

The goal of the acoustic crystal method is to determ
the Helmholtz free energy of the solid phase of a mo
system using a sequence of Monte Carlo or molecular
namics simulations. The reduced configurational free ene
per particle ofN particles in volumeV is

f 52
1

N
lnS QN

sNdD5
FN~T,V!

NkBT
2d lnS L~T!

s D , ~1!

whereFN(T,V) is the Helmholtz free energy,L(T) is the
thermal de Broglie wavelength,

QN5
1

N! E exp@2bU0~rW1 ,rW2 , . . . ,rWN!#dNrW ~2!

is the configurational partition function,b51/(kBT) is the
inverse temperature,s is an arbitrary length scale, andd is
the dimension. The particle interactions of the model sys
contained in the potential energyU0(rW1 ,rW2 , . . . ,rWN) are as-
sumed to be invariant to a uniform translation of allN par-
ticles. In the acoustic crystal method one adds a term to
particle interaction energy proportional to a dimensionl
coupling constantl,

bU5bU01lbU1 , ~3!

where, for example,

U15
mv0

2

4 (
RW

(
dW

$d̂•@rW~RW 1dW !2rW~RW !2dW !#%2. ~4!

The total interaction energy of the system isU, andU1 is the
acoustic crystal energy. The sums in Eq.~4! are over all
lattice pointsRW and all nearest neighbor vectorsdW and cor-
responding unit vectorsd̂. An extra factor of 1/2 in Eq.~4!
accounts for double counting of the quadratic couplings
the limit l→0, the model system is recovered. This pote
tial energy is the quadratic order approximation of a set
springs with spring constantmv0

2 and length of one lattice
spacing that couple nearest neighbor particles on the lat
We have chosen a specific quadratic form for the harmo
coupling but almost any quadratic coupling that has the sa
crystalline symmetry as the model solid phase and prese
the overall translational invariance will work. The Einste
crystal energy has the simpler form

U15
mv0

2

4 (
RW

@rW~RW !2RW #2. ~5!
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The key difference compared to the acoustic crystal is t
the normal modes of the Einstein crystal dynamical ma
form d degenerate optical mode branches with frequencyv0
independent of wave vector. The acoustic crystal had
acoustic mode branches that vanish at the center of the
louin zone.

The configurational partition function of the solid pha
of the acoustic crystal with couplingl is given by

QN~l!5E exp~2bU02lbU1!dNrW. ~6!

The N! factor has been removed because of the spec
choice of the crystalline configuration of the particles. T
reduced configurational free energy per particle is given

f ~l!52
1

N
lnS QN~l!

sNd D . ~7!

The free energy of the model system atl50 is determined
by a thermodynamic integration froml50 to l5l0, where
l0 is chosen large enough that the model system’s inte
tions are negligible or can be treated perturbatively. Ther
an implicit assumption that the path between the model s
tem and the reference system is reversible. The free en
of the model systemf 5 f (0) is given by

f 5 f ~l0!2E
0

l0 ] f

]l
dl5 f ~l0!2E

0

l0
u~l!dl, ~8!

whereu(l)5^bU1&l /N is the average harmonic energy p
particle at couplingl scaled bykBT. If the free energy atl0
is known exactly, or can be determined perturbatively from
simulation at that value of the coupling, then the free ene
of the model system can be determined from Eq.~8!. The
integral can be evaluated by calculating the average acou
crystal energy from simulations at enough intermediate v
ues ofl to accurately approximate the integral~8! by a sum.
For hard potentials in which the pair interactions van
when particles are not in contact, one can simply choose
limiting coupling l0 to be large enough so that the ha
collisions are extremely infrequent. One may include t
hard interactions perturbatively@2,3# but this is not really
necessary if l0 is chosen large enough. Typicallyl0
'104–105 is large enough to ensure that the hard inter
tions are negligible. Since the equipartition theorem giv
lu(l)→d/2 for largel and the range of integration is ove
such a large range of coupling, it is convenient to break
integral into two parts:

E
0

l0
u~l!dl5E

0

l1
u~l!dl1E

ln(l1)

ln(l0)

lu~l!d@ ln~l!#.

~9!

Each of the integrals can be evaluated by sampling the i
grand at points in the interval and by summing, using a
standard numerical integration method. We used eve
spaced points and Simpson’s rule. The intermediate p
was chosen asl151 and the spacing in the second integ
2-2
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ACOUSTIC CRYSTAL THERMODYNAMIC . . . PHYSICAL REVIEW E 66, 036132 ~2002!
wasl j5bj , whereb5A2. This was sufficiently fine to en
sure that uncertainties are dominantly due to the statis
uncertainties in the integrand rather than errors introduced
the numerical integration itself.

The partition function of the acoustic crystal in the lar
coupling limit in d dimensions can be determined from t
normal modes of theNd-dimensional dynamical matrix~see
Appendix A!:

QN
AC~l!5

V

N
Nd/2 )

kÞ0,s
A 2p

lbmvk,s
2 . ~10!

The eigenvalues are labeled byN values ofk andd values
of s that label thed different phonon polarizations. Since th
couplings preserve the translational symmetry of the mo
system, there are always exactlyd zero eigenvalues. For cou
plings that form a periodic lattice, the eigenvalues of t
dynamical matrix can be determined by diagonalizing
dynamical matrix in the Fourier space@7#. See Appendix B.
In that case the labelk refers to theN k-space points in the
Brillouin zone. The acoustic crystal reference system
duced configurational free energy per particle~7! is then

f AC~l0!5
1

2N (
kÞ0,s

ln~bmvk,s
2 s2!1

d~N21!

2N
lnS l0

2p D
2

d

2N
ln~N!2

1

N
lnS V

NsdD . ~11!

The Einstein crystal free energy~with fixed center of mass
and a final space integration over the center-of-mass lo
tion! is a special case of equations~10! and ~11!. The Ein-
stein crystal has all eigenvaluesvk,s5v0 . References@2#
and@3# have an incorrectN dependence of the partition func
tion ~10! and the free energy~11! that is evident for smallN,
but this has been corrected in Ref.@4#.

III. EXACT TESTS

A one-dimensional system of hard beads on a ring is
actly integrable. The partition function forN identical hard
beads of diameters on a ring of lengthL5Na is given by

QN
Hard Bead5

1

NE0

Na

dx1E
x11s

Na1x12(N21)s

dx2 . . .

3E
xN211s

Na1x12s

dxN

5
NN

N!
a~a2s!N21. ~12!

The parametera represents the average ‘‘lattice’’ spacing o
the ring. Equation~12! is easily derived from Tonks’@8#
result by fixing the first~or the last! particle on the ring of
length L and then integrating over the possible locations
that particle, accounting for indistinguishability. A system
hard rods in one dimension does not form a long-range
dered lattice, but both the Einstein crystal method and
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acoustic crystal method can be used to calculate the
energy of the model for finiteN. Extensive tests for smallN
verify the aptness of the method. The acoustic crystal met
continues to work even for very large systems (N.1000),
whereas the accuracy of the Einstein crystal method be
to suffer from the effects described in the following secti
for largeN.100.

One can also test the Einstein crystal method and
acoustic crystal method in two dimensions by numerica
determining the four particle partition function by using
standard Monte Carlo integration@10#. The eight-
dimensional integral

Q4
Hard Disks5

1

4!E drW1E drW2E drW3E drW4

3exp@2bU~rW1 ,rW2 ,rW3 ,rW4!# ~13!

is easily determined by randomly choosing particle positio
in a periodic volume of four primitive cells and checking fo
overlaps. A system of four hard disks with diameters and
nearest neighbor lattice spacing ofa51.10s has a free en-
ergy f 452 ln(Q4 /s8)/452.43160.005. Both the Einstein
crystal and acoustic crystal methods agree with this resu

IV. TEMPORAL CORRELATIONS

The acoustic crystal method is substantially more accu
than the Einstein crystal method for systems larger th
about 100 lattice spacings on a side. The accuracy of
Einstein crystal method is degraded by two effects: the in
grandu(l) is divergent asl→0 in the thermodynamic limit
for dimensionsd<2 and, more importantly, the Einstei
crystal energy-energy correlation time is divergent in t
thermodynamic limit asl→0 for all d,4.

The former is caused by the lack of long-range order
model systems ind<2 @6#. The Einstein crystal coupling
imposes long-range order whether the model system has
not. For model systems in one dimension^uR,a

2 &;N. In two
dimensionŝ uR,a

2 &; ln(N). This makesu(l) a singular func-
tion of l at smalll so many points at smalll are necessary

FIG. 1. The smalll harmonic energy vs coupling for systems
2563256 hard disks in two dimensions fora51.10s. Both axes
are dimensionless. Note the logarithmic singularity of the ene
and the large uncertainties at small coupling for the Einstein crys
The singularity is due to the lack of long-range order and the la
uncertainties are due to the long correlation times. The error b
for the acoustic crystal are invisible on this scale.
2-3



in
an
a

th
un
fo

es
ril
rg

-

n

s
he
n

lly
st
in
sin

on
m
ed
flu
rl
-
en
-

ar
de

t
ys
pl
-

es

nd
nte
al

bye
he
on

e
ter
ns-

n-

ela-

he
.
ent

PAUL D. BEALE PHYSICAL REVIEW E66, 036132 ~2002!
to accurately determine the integral in Eq.~9!. See Fig. 1.
The acoustic crystal method does not have this shortcom
because it exhibits short-range order in one dimension
quasi-long-range order in two dimensions like a typic
model system. The acoustic crystal interactions smoo
change the spatial correlations of the model system as a f
tion of l rather than abruptly creating long-range order
lÞ0.

The more important effect is the long correlation tim
that occur in the Einstein crystal. These result from a B
louin zone center singularity in the harmonic energy-ene
correlation functionf(t) defined by@9#

f~ t !5
^u~ t !u~0!&2^u~ t !&^u~0!&

^u2&2^u&2 . ~14!

The dimensionless ‘‘time’’t is measured in Monte Carlo
steps per particle~MCS!. The effective number of statisti
cally independent configurations is

Ne f f5
NMCS

2t11
, ~15!

whereNMCS is the number of MCS used in the simulatio
and the correlation timet is defined by

2t115 (
t52`

`

f~ t !. ~16!

Long correlation times degrade the statistical uncertaintie
Monte Carlo simulations. Long correlation times occur in t
Einstein crystal method near zero coupling for all dime
sionsd<4. In contrast, the correlation time is asymptotica
independent of the system size in the acoustic cry
method. The source of this effect is made evident by writ
the Einstein crystal energy and acoustic crystal energy u
their normal mode expansions:

U15
m

2 (
k,s

vk,s
2 ûk,s

2 . ~17!

In the small coupling limit the evolution of thek-space
modes near the zone center is slow because of the l
wavelength hydrodynamic evolution of the normal mode a
plitudes ûk,s(t). The evolution of these modes is govern
by the elastic restoring force that acts on spontaneous
tuations, and the dissipative dynamics of the Monte Ca
method.~Molecular dynamics simulations will exhibit iner
tial behavior at short time, but the long-time scale dep
dence will be similar to the MC results.! Even systems de
fined by hard potentials exhibit elastic behavior@6,11,12#.
We are interested in the limit where the Einstein~or acoustic!
couplings are negligibly small so the restoring forces
determined by the equilibrium elastic behavior of the mo
system. Since the model system is in a solid phase and
system is invariant to uniform translations of the whole s
tem, the restoring force acting on the normal mode am
tudes is 2mcs

2k2ûk,s(t), where cs represents the long
wavelength longitudinal and transverse sound speeds@14#.
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The Monte Carlo dynamics of the evolution of these mod
is approximately governed by ‘‘modelB’’ Langevin dynam-
ics @13,14#

]ûk,s~ t !

]t
52gmcs

2k2ûk,s~ t !1hk,s~ t !, ~18!

wherehk,s(t) is an uncorrelated Gaussian random force a
g is a rate constant determined by the details of the Mo
Carlo method. The solution of the normal mode-norm
mode correlation function is@13,14#

^ûk,s~ t !ûk8,s8~ t8!&5
2kBT

mcs
2k2 dk,k8ds,s8 exp~2gmcs

2k2ut2t8u!.

~19!

The harmonic energy-energy correlation function Eq.~14!
can then be evaluated using Eq.~19!:

f~ t !5

(
k,s

vk,s
4

k4 exp~22gmcs
2k2utu!

(
k,s

vk,s
4

k4

. ~20!

The sums can be approximated by integrals in a De
model-like scheme@7# as long as care is taken to handle t
small wave-vector singularities. The correlation functi
~14! should then scale with time at long time as

f~ t !;

E
(La)/L

L vk,s
4

k4 exp~22gmc2k2utu!kd21dk

E
(La)/L

L vk,s
4

k4 kd21dk

. ~21!

The upper limit cutoffL ~the ‘‘Debye wave vector’’! is set
by the size of the Brillouin zone. The lower limit is set by th
k-space point spacing near the zone center. The paramec
is a spatially weighted average of the longitudinal and tra
verse sound speeds as in the Debye model. Equation~21! can
be approximately evaluated in the long-time limit. The Ei
stein crystal correlation functionfEinstein(t) in less than four
dimensions will scale as

fEinstein~ t !;exp~22gmc2utu/L2! ~22!

because of the zone center singularity. Therefore the corr
tion time is

t5L2/~2gmc2!. ~23!

Note that the zone center singularity is eliminated in t
acoustic crystal becausevk,s;k at a small wave vector
Therefore the acoustic crystal correlation time is independ
of the system size in all dimensions

facoustic~ t !;exp~22gmc2utuL2!. ~24!
2-4
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V. HARD DISK AND HARD SPHERE RESULTS

We apply the acoustic crystal thermodynamic integrat
method to systems of hard disks in two dimensions and h
spheres in three dimensions. The results are shown in T
I. For the largest three-dimensional system (24324324) the
small coupling correlation times of the three-dimensio

FIG. 2. The Einstein crystal and acoustic crystal correlat
times of hard spheres (l50) in three dimensions as a function o
system size fora51.10s. Both axes are dimensionless. The lin
proportional toL2 shows the theoretical scaling of the Einste
crystal correlation time with system size@Eq. ~23!#.

TABLE I. The reduced configurational free energy per particlf
for hard spheres ind53 dimensions and hard disks ind52 dimen-
sions determined using the acoustic crystal method. The param
L/a is the number of particles along one side of the periodic cry
~triangular in 2D and fcc in 3D!, N is the number of particles,a/s
is the ratio of the primitive lattice vector to the particle diameterh
is the packing fraction,f is the reduced free energy, andD f is the
uncertainty inf.

d L/a N a/s h f D f

3 ` ` 1.08 0.5878 5.91196 0.00030
3 ` ` 1.09 0.5718 5.53618 0.00016
3 ` ` 1.10 0.5563 5.19631 0.00031
3 12 1728 1.10756 0.5450 4.95469 0.0005
3 16 4096 1.10756 0.5450 4.95647 0.0003
3 24 13824 1.10756 0.5450 4.95841 0.0001
3 ` ` 1.10756 0.5450 4.95881 0.00016
3 ` ` 1.11 0.5410 4.88460 0.00032
2 ` ` 1.01 0.8890 7.91354 0.00026
2 ` ` 1.02 0.8717 6.51895 0.00029
2 ` ` 1.03 0.8548 5.69855 0.00024
2 ` ` 1.04 0.8385 5.11460 0.00023
2 ` ` 1.05 0.8226 4.65939 0.00024
2 ` ` 1.06 0.8071 4.28540 0.00025
2 ` ` 1.07 0.7921 3.96764 0.00025
2 ` ` 1.08 0.7775 3.69084 0.00010
2 ` ` 1.09 0.7633 3.44504 0.00022
2 2 4 1.10 0.7495 2.433 0.003
2 16 256 1.10 0.7495 3.21026 0.0009
2 32 1024 1.10 0.7495 3.22056 0.0004
2 64 4096 1.10 0.7495 3.22261 0.0002
2 128 16384 1.10 0.7495 3.22322 0.0001
2 256 65536 1.10 0.7495 3.22328 0.0000
2 ` ` 1.10 0.7495 3.22335 0.00005
03613
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face centered cubic~fcc! lattice are about 103 MCS for the
Einstein crystal method compared to about 50 MCS for
acoustic crystal method. In two dimensions the effect is m
pronounced because larger linear dimensions are acces
Correlation times on the order of 104 MCS occur for Ein-
stein crystals of 2563256 particles. See Fig. 2 and 3.

Because of the long correlation times and the logarithm
singularity at zero coupling in two dimensions, the unc
tainty in the free energy is dominated by a few points n
zero coupling for system sizes greater than about
3100. See Fig. 4. Since the acoustic crystal method does
suffer from this problem, it is a more efficient method f
large systems.

Thermodynamic limit values of the configurational fre
energy per particle were determined by extrapolatingN
→`. The leading correction to the free energy is prop
tional to 1/N. One might expect correction terms of ord
ln(N)/N but those appear to be very small. See Fig. 5. T
two-dimensional hard disk thermodynamic limit results a
well fit by the crystal equation of state free energy@15,16#:

f Hard Disk52 lnS 4S a

s
21D

ncps
2

D 1C01C1S a

s
21D

1c2S a

s
21D 2

1 . . . . ~25!

n

ter
l

FIG. 3. The Einstein crystal and acoustic crystal correlat
times of hard disks (l50) in two dimensions as a function o
system size fora51.10s. Both axes are dimensionless. The lin
proportional toL2 shows the theoretical scaling of the Einste
crystal correlation time with system size@Eq. ~23!#.

FIG. 4. The statistical uncertainty of the harmonic energy
coupling for a 2563256 system of hard disks in two dimension
with a51.10s. Both axes are dimensionless. The large and incre
ing uncertainty at small coupling for the Einstein crystal is due
the L2 dependence of the correlation time@Eq. ~23!#.
2-5
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PAUL D. BEALE PHYSICAL REVIEW E66, 036132 ~2002!
The ratio of the nearest neighbor lattice spacing to the d
diameter isa/s5(ncp /n)1/d, wheren is the number density
and ncp is the close-packed number density. The best fit
the data over the range 1.01<a/s<1.10 gives C0
520.046460.0004, C1520.8060.02, and C2521.2
60.2. Early work @16# using thermodynamic integratio
through the solid-liquid phase transition to the ideal gas li
found C0520.0560.01 andC0520.0660.02. Equation
~25! fits the thermodynamic limit acoustic crystal free ener
results to within less than 0.001 over the range 1.00<a/s
<1.10.
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APPENDIX A

The energy of the acoustic crystal can be written using
dynamical matrix:

UAC5
1

2 (
R,R8,a,a8

uR,aDa,a8~R2R8!uR8,a8 , ~A1!

TheuR,a variables represent particle distances from the eq
librium positions in thed Cartesian directions. The dynam
cal matrixDa,a8(R2R8) has the following properties inde
pendent of whether or not the couplings form a perio
lattice.

The dN3dN dimensional matrix is real and symmetri
The energy is invariant under the translation of all partic
by the same vector displacement. The translational inv
ance implies thatd of the eigenvalues vanish. The eigenve
tors associated with the zero eigenvalues describe unif
translations of all the particles inside thed-dimensional pe-
riodic box that encloses the particles. The couplings are c
sen so that all other eigenvalues are positive.

FIG. 5. The finite-size dependence of the two-dimensional h
disk reduced free energy ata/s51.10. The figure shows the dif
ference between the free energy determined using the acoustic
tal method and the best fit to the formf (N)5 f `1a1 /N. Both axes
are dimensionless. The best fit givesf (N)5(3.223 3560.000 05)
1(23.160.1)/N. The linear dimension of the systems range fro
L/a58 to L/a5256 (N564 to N5655 36). Any ln(N)/N correc-
tions that might exist are small.
03613
k

o

it

r,
-
a-

e

i-

c

s
i-
-
m

o-

The dynamical matrix for a periodic lattice can be diag
nalized in Fourier space and the eigenvectors and eigen
ues indexed using theN k-space points in the Brillouin zone
In the eigenproblem

(
R8,a8

Da,a8~R2R8!FR8,a8
k,s

5mvk,s
2 FR,a

k,s , ~A2!

the eigenvectors$FR,a
k,s % form a complete orthonormal se

Since the eigenvectors corresponding to the vanishing eig
values represent uniform translations, the eigenvectors h
the properties

(
R

FR,a
kÞ0,s50 ~A3!

and

FR,a
k50,s5

1

AN
da,s , ~A4!

whereda,s is the Kronecker delta. The partition function i

QN
AC~l!5E )

R,a
duR,a expS 2

lb

2 (
R,a

(
R8,a8

uR,aDa,a8~R

2R8!uR8,a8D . ~A5!

We can use the eigenvectors to perform an orthogonal tr
formation,

uR,a5(
k,s

ûk,sFR,a
k,s . ~A6!

The partition function can be rewritten in terms of the va
ablesûk,s .

QN
AC~l!5E )

k,s
dûk,s expS 2

lbm

2 (
k,s

vk,s
2 ûk,s

2 D .

~A7!

For large enoughl, one may complete all the Gaussia
integrals in Eq.~A7! over the variables associated with th
nonzero eigenvalues and make only an exponentially sm
error:

QN
AC~l!5S E )

s
dû0,s1D )

kÞ0,s
A 2p

lbmvk,s
2 . ~A8!

The final integral is over the space of allowed values ofû0,s .
Due to the translational symmetry, this variable is prop
tional to the deviation of the center of mass of the partic
from the center of mass of the lattice positions:

ua
cm5

1

N
(
R

uR,a5
1

N
(
R

(
k,s

ûk,sFR,a
k,s 5

1

AN
û0,a .

~A9!

d

ys-
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For a crystal of identical particles the center of mass mus
confined to one primitive cell of the lattice to avoid ove
counting identical configurations. Therefore, the final res
for the acoustic crystal partition function is

QN
AC~l!5

V

N
Nd/2 )

kÞ0,s
A 2p

lbmvk,s
2 . ~A10!

This final result also applies to the fixed center-of-mass E
stein crystal@4# in which all the frequency eigenvalues ca
be chosen to be unity.

APPENDIX B

In one dimension the eigenvalues of the dynamical ma
$vk

2% for N particles on a periodic ring coupled by sprin
with unit spring constant and length of one lattice spac
are

vk
254v0

2 sin2S pk

N D , ~B1!
:

m

et

ys

03613
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lt

-

x

g

wherek50,1, . . . ,N21.
In two dimensions the eigenvalues of the dynamical m

trix $vk,s
2 % for an N13N1 triangular lattice are given by the

eigenvalues of the 232 matrices,

v0
2S 4s11s21s12 A3~s22s12!

A3~s22s12! 3~s21s12!
D , ~B2!

wherek150,1, . . . ,N121 andk250,1, . . . ,N121,

sa5sin2S pka

N1
D ~B3!

and

sab5sin2S p~ka2kb!

N1
D . ~B4!

In three dimensions, the eigenvalues of the dynamical ma
$vk,s

2 % for an N13N13N1 face centered cubic lattice ar
given by the eigenvalues of the 333 matrices,
v0
2S 2~s21s31s121s13! 2~s32s12! 2~s22s13!

2~s32s12! 2~s11s31s121s23! 2~s12s23!

2~s22s13! 2~s12s23! 2~s11s21s131s23!
D , ~B5!

wherek150,1, . . . ,N121, k250,1, . . . ,N121, k350,1, . . . ,N121 andsa andsab are defined in Eqs.~B3! and ~B4!.
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