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The acoustic crystal thermodynamic integration method is a generalization of the Einstein crystal method
developed by Frenkel and Ladd. The name is derived from the acoustic branches of the phonon spectrum of the
reference system. The method is designed to calculate the Helmholtz free energy of classical solid phases using
Monte Carlo or molecular dynamics simulations. It has several advantages over the Einstein crystal method.
For large systems, the Einstein crystal method suffers from very long correlation times near the zero coupling
limit because the reference system breaks the overall translational symmetry of model systems. The acoustic
crystal method does not break translational symmetry, so correlation times for the acoustic crystal are small.
This makes the acoustic crystal method superior to the Einstein crystal method for large system sizes. Also the
acoustic crystal method does not artificially introduce long-range order in low-dimensional systems.
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[. INTRODUCTION crystal method imposes long-range translational order on the
system for all nonzero couplings. This is important in low
Monte Carlo[1] and molecular dynamick2] simulation  dimensions §<2) where model systems do not display
methods are widely used to calculate thermodynamic proplong-range translational ordgé]. Because of this, the ther-
erties of the solid and liquid phases of model systems ofnodynamic integration integrand in the Einstein crystal
interacting particles. These methods are very useful for demethod is divergent in the thermodynamic limit at zero cou-
termining the properties of the liquid and solid phases ofpling. Therefore many points are needed near the zero cou-
models but, because of hysteresis, are not particularly wepling limit to calculate the integral accurately.
suited for determining the location and properties of the (3) The Einstein crystal method requires the use of an
melting transition. The location of a first-order melting line ensemble in which the center of mass of the system is fixed
can be determined using Maxwell’s double tangent construcin order to deal with the translational symmetry breaking that
tion if the free energy densities of the solid and liquid phase®ccurs for nonzero coupling. This does not add significantly
are both known. Simulation methods at a single point in théo the complexity of a calculation, but it is not necessary in
phase diagram such as variants of the Widom particle insethe acoustic crystal method.
tion method[2] can determine the free energy at that point, (4) The Einstein crystal method suffers from long Monte
but they are generally not useful in high density solid phase€arlo correlation timegof order L? whereL is the linear
because of the extremely low probability of successful pardimension of the crystaht small coupling. While the center-
ticle insertion. The alternative is to use a sequence of simuef-mass ensemble effectively deals with the zero wave-
lations to determine the free energy difference between anyector modes, many long wavelengfsmall wave-vector
point in the phase diagram of the model system and theodes remain. The difference between the Einstein crystal
known free energy of a reference system. The free energynethod and the acoustic crystal method is due to differences
difference is given by a thermodynamic integration along an the classical phonon spectra of the reference systems. The
reversible path between the model system and the referenspectrum of the Einstein crystal has frequencigg that are
system. This paper describes a method for calculating thdependent of wave vector, whereas the spectrum of the
free energy of solid phases in classical statistical mechanicacoustic crystal consists of acoustic branches that vanish lin-
by a thermodynamic integration to a reference system whosearly as wave vectok—0. For small coupling, the small
particles are harmonically coupled to their nearby neighborswave-vector modes of the model system evolve slowly due
This method is a generalization of the Einstein crystalto correlated diffusive motion on length scales of ordés. 1/
method developed by Frenkel and Lad@d-4]. Like Frenkel — This results in energy-energy correlation times of oideat
and Ladd’s method, this method works for both hard and sofsmall coupling. By contrast, the acoustic crystal correlation
interaction potentials. Other thermodynamic integrationtime is independent df at small coupling because the con-
methodg 2,5] work well for soft potentials. tribution to the energy of those modes vanishe&-as).
The acoustic crystal thermodynamic integration method One disadvantage of the acoustic crystal method com-
has several advantages over the Einstein crystal method. pared to the Einstein crystal method is the added complexity
(1) The acoustic crystal Hamiltonian is invariant to a uni- of calculating the acoustic crystal harmonic energy compared
form translation of the entire system. The Einstein crystako the simpler Einstein crystal energy. This extra effort is
method breaks the overall translational symmetry. justified for large systems because of the increased accuracy
(2) The breaking of translational symmetry in the Einsteinattainable in the acoustic crystal method due the smaller cor-
relation times. The acoustic crystal method also requires one
to diagonalize the dynamical matrix to determine the free
*Email address: Paul.Beale@Colorado.edu energy of the reference system at large coupling. The dy-
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namical matrix diagonalization for the Einstein crystal is The key difference compared to the acoustic crystal is that
trivial. The calculation of the acoustic crystal phonon fre-the normal modes of the Einstein crystal dynamical matrix
quencies is straightforward if the reference system has crygerm d degenerate optical mode branches with frequengy
talline order. Otherwise, the method requires one completendependent of wave vector. The acoustic crystal Has
numerical eigenvalue decomposition of tiNdXNd dy-  acoustic mode branches that vanish at the center of the Bril-
namical matrix. louin zone.
The configurational partition function of the solid phase
Il. METHOD of the acoustic crystal with coupling is given by

The goal of the acoustic crystal method is to determine _ NES
the Helmholtz free energy of the solid phase of a model QN()‘)_j exp(—BUo— AU dTT. ©
system using a sequence of Monte Carlo or molecular dy-
namics simulations. The reduced configurational free energyhe N! factor has been removed because of the specific

per particle ofN particles in volumeV is choice of the crystalline configuration of the particles. The
reduced configurational free energy per patrticle is given by
(1 (0 ) _RTV) In(A(T)) W L oun
=N TNd| = - ; N
N"\e NkgT o f)=— | v ) (7)

where F\(T,V) is the Helmholtz free energy\(T) is the ) )
thermal de Broglie wavelength, The free energy of the model systemiat 0 is determined

by a thermodynamic integration fron=0 to A =\,, where
1 Lo . R N\o is chosen large enough that the model system’s interac-
QNZWJ exd — BUo(r1.T5, ... ry)]dNr (2)  tions are negligible or can be treated perturbatively. There is
' an implicit assumption that the path between the model sys-
tem and the reference system is reversible. The free energy

is the configurational partition functiorB=1/(kgT) is the of the model systeni— (0) is given by

inverse temperaturey is an arbitrary length scale, antlis
the dimension. The particle interactions of the model system roof o

contained in the potential enerdyy(r;,r,, . .. fy) are as- f=f()\0)—J —d)\=f()\0)—J u(\)dn, (8)
sumed to be invariant to a uniform translation of ldlpar- o I\ 0

ticles. In the acoustic crystal method one adds a term to the

particle interaction energy proportional to a dimensionlesé’vhe.reu()‘):<'8L.J1>*/N is the average harmonic energy per
coupling constant, particle at coupling\ scaled bykgT. If the free energy ak,

is known exactly, or can be determined perturbatively from a
simulation at that value of the coupling, then the free energy
of the model system can be determined from Ej. The
integral can be evaluated by calculating the average acoustic
crystal energy from simulations at enough intermediate val-
M2 ues of\ to accurately approximate the integ(8) by a sum.
Ulz_o > D {5 [r(R+3)—-r(R)—5 ]2 (4  For hard potentials in which the pair interactions vanish
4 5 when particles are not in contact, one can simply choose the
limiting coupling \y to be large enough so that the hard
The total interaction energy of the systenUisandU, isthe  collisions are extremely infrequent. One may include the
acoustic crystal energy. The sums in Hd) are over all hard interactions perturbativefy2,3] but this is not really
lattice pointsR and all nearest neighbor vectofsand cor- necessary if\, is chosen large enough. Typically,
responding unit vectord. An extra factor of 1/2 in Eq4) ~ ~10'=1C is large enough to ensure that the hard interac-
accounts for double counting of the quadratic couplings. Ifions are negligible. Since the equipartition theorem gives
the limit \—0, the model system is recovered. This poten-MU(A\)—d/2 for largeX and the range of integration is over
tial energy is the quadratic order approximation of a set ofuch a large range of coupling, it is convenient to break the
springs with spring constamiw? and length of one lattice Ntégral into two parts:
spacing that couple nearest neighbor particles on the lattice. . v In\g)
We have chosen a specific quadratic form for the harmonic f u()\)dy\:f u()\)d)\+f Au(\)d[In(n)].
coupling but almost any quadratic coupling that has the same /o 0 In(xy)
crystalline symmetry as the model solid phase and preserves ©)
the overall translational invariance will work. The Einstein
crystal energy has the simpler form

BU=pBUo+ABUy, 3

where, for example,

Each of the integrals can be evaluated by sampling the inte-
grand at points in the interval and by summing, using any

M2 standard numerical integration method. We used evenly

Ulz_o > [r(R)—RJ? (5)  spaced points and Simpson’s rule. The intermediate point
4 ] was chosen as;=1 and the spacing in the second integral
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was\j=b’, Whergb_z V2. This was sufficiently fine to en- 0ooi6lE A'Einst;in Crlystoll
sure that uncertainties are dominantly due to the statistical A © Crvetol
uncertainties in the integrand rather than errors introduced by 0.014r , o Acoustic Crystal 5
the numerical integration itself. < 0.012F = ]
The partition function of the acoustic crystal in the large > cools o ., .
coupling limit in d dimensions can be determined from the 0.010F . ]
normal modes of th& d-dimensional dynamical matrigsee 0.008 * ]
Appendix A): o
0o 1 2 3 4 5 &6

\% 2
noo=gNIl (10

+0s )\,‘Twis FIG. 1. The smalk harmonic energy vs coupling for systems of
' 256X 256 hard disks in two dimensions fer=1.10r. Both axes
The eigenvalues are labeled Nyvalues ofk andd values are dimensionless. l\!otg the Iogarithmic_ singularity pf th_e energy
of sthat label thed different phonon polarizations. Since the and the Iarge_ uncertalntles at small coupling for the Einstein crystal.
couplings preserve the translational symmetry of the mode| "© Singularity is due to the lack of long-range order and the large
system, there are always exaatlgero eigenvalues. For cou- uncertainties are due to thg ang correlatllon times. The error bars
. ’ S . . for the acoustic crystal are invisible on this scale.
plings that form a periodic lattice, the eigenvalues of the
35222:22: msttrri?((iﬁ?] ebg Oﬂﬁﬁr?g;%%'bg ezligp%n;:gi')?%‘theacoustic crystal method can be used to calculate the free

In that case the labe refers to theN k-space points in the energy of the model for finit&l. Extensive tests for smal

Brillouin zone. The acoustic crystal reference system reyerlfy the aptness of the method. The acoustic crystal method

s : i continues to work even for very large systeni$>1000),
duced configurational free energy per partigis then whereas the accuracy of the Einstein crystal method begins

_ to suffer from the effects described in the following section
d(N=1) [Ag
I > for large N>100.

™ One can also test the Einstein crystal method and the

acoustic crystal method in two dimensions by numerically

(1)  determining the four particle partition function by using a
standard Monte Carlo integratiof10]. The eight-
dimensional integral

1
fac(No)= >N k;m In(Bmef (o?) + N M

dI lI V
~on N ginl Koa )

The Einstein crystal free energyith fixed center of mass
and a final space integration over the center-of-mass loca- 1

tion) is a special case of equatiofis0) and (11). The Ein- Eard Disks:_J dFlf szJ ngj dF4

stein crystal has all eigenvalues, = wy. Referenced2] 4!

and[3] have an incorredil dependence of the partition func- . e e o

tion (10) and the free energgll) that is evident for smal, Xex—BU(ry,rz,rs,ra)] (13)

but this has been corrected in REf]. ) ] ) ) ] -
is easily determined by randomly choosing particle positions

in a periodic volume of four primitive cells and checking for
overlaps. A system of four hard disks with diameteand

A one-dimensional system of hard beads on a ring is exhearest neighbor lattice spacing @ 1.10r has a free en-
actly integrable. The partition function fod identical hard  ergy f,= —In(Q,/0®)/4=2.431+0.005. Both the Einstein
beads of diametes on a ring of lengthL=Na is given by  crystal and acoustic crystal methods agree with this result.

Ill. EXACT TESTS

1 (Na Na+x;—(N-1)o
Qnard Beadzﬁfo dxlf

dx, ... IV. TEMPORAL CORRELATIONS
1+

X . . .
The acoustic crystal method is substantially more accurate

Na+x;—o than the Einstein crystal method for systems larger than
XJ dxy about 100 lattice spacings on a side. The accuracy of the
Einstein crystal method is degraded by two effects: the inte-
grandu(\) is divergent as.— 0 in the thermodynamic limit
for dimensionsd<2 and, more importantly, the Einstein
crystal energy-energy correlation time is divergent in the
The parametea represents the average “lattice” spacing on thermodynamic limit as—0 for all d<4.
the ring. Equation(12) is easily derived from Tonks[8] The former is caused by the lack of long-range order for
result by fixing the first(or the last particle on the ring of model systems ird<2 [6]. The Einstein crystal coupling
length L and then integrating over the possible locations ofimposes long-range order whether the model system has it or
that particle, accounting for indistinguishability. A system of not. For model systems in one dimensiai ,)~N. In two
hard rods in one dimension does not form a long-range ordimensions(uéya%ln(N). This makesu(\) a singular func-
dered lattice, but both the Einstein crystal method and théion of A at smallx so many points at smal are necessary

XN—1TO
NN

=ma(a—a)’\"1. (12
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to accurately determine the integral in H§). See Fig. 1. The Monte Carlo dynamics of the evolution of these modes
The acoustic crystal method does not have this shortcomings approximately governed by “mod@&” Langevin dynam-
because it exhibits short-range order in one dimension anits [13,14]
qguasi-long-range order in two dimensions like a typical

model system. The acoustic crystal interactions smoothly Ay () .
change the spatial correlations of the model system as a func- (9',[ = — ymcZk2Uy (1) + 7 s(1), (18)
tion of N rather than abruptly creating long-range order for
A #0.

. . _ . where 7 ¢(t) is an uncorrelated Gaussian random force and
The more important gffect Is the long correlation tlmgsy is a rate constant determined by the details of the Monte

that occur in the Einstein crystal. These result from a Bril-~_ " 1 1athod. The solution of the normal mode-normal

louin zone center singularity in the harmonic energy-energy 4o correlati-on function i§13,14

correlation functiong(t) defined by[9] '

- - 2kgT
o(1)= <“(””<?32>_ _<21$>2><u<0>>_ 19 (Ol (1) =1 T e i o~ ymeKelt—t).
19

The dimensionless “time’t is measured in Monte Carlo ) ) )
steps per particléMCS). The effective number of statisti- The harmonic energy-energy correlation function Etg)

cally independent configurations is can then be evaluated using E@9):
_ Nucs Wics 2
Nett=5_"77° (15) kES Wexq—Zymcﬁk [t])
whereNycs is the number of MCS used in the simulation D “k,s
and the correlation time is defined by = k?

_ - The sums can be approximated by integrals in a Debye
27t 1_t;_w ¢(1). (16 model-like schemg§7] as long as care is taken to handle the
small wave-vector singularities. The correlation function
Long correlation times degrade the statistical uncertainties of14) should then scale with time at long time as

Monte Carlo simulations. Long correlation times occur in the
4

Einstein crystal method near zero coupling for all dimen- A wys ) i1
sionsd=<4. In contrast, the correlation time is asymptotically J(Aa)/LWeXIi —2ymc?k?[t])k?~*dk
independent of the system size in the acoustic crystal H(t)~ B (22)
method. The source of this effect is made evident by writing fA Phs ) d-1q

the Einstein crystal energy and acoustic crystal energy using (Aa)/L k4

their normal mode expansions:

m The upper limit cutoffA (the “Debye wave vectorJ is set
Ui== > w2 J2,. (17) by the size of the Brillouin zone. The lower limit is set by the
24 0 k-space point spacing near the zone center. The parameter
) o ) is a spatially weighted average of the longitudinal and trans-
In the small coupling limit thg evolution of th&space ygrse sound speeds as in the Debye model. EquéBrcan
modes near the zone center is slow because of the longse approximately evaluated in the long-time limit. The Ein-
wavelength hydrodynamic evolution of the normal mode am-gin crystal correlation functiofeincei(t) in less than four
plitudesu, ((t). The evolution of these modes is governeddimensions will scale as
by the elastic restoring force that acts on spontaneous fluc-
tuations, and the dissipative dynamics of the Monte Carlo deinsteid t) ~exp(—2ymc2|t]/L?) (22
method.(Molecular dynamics simulations will exhibit iner-
tial behavior at short time, but the long-time scale depenbecause of the zone center singularity. Therefore the correla-
dence will be similar to the MC resuljsEven systems de- tion time is
fined by hard potentials exhibit elastic behavjér11,12.
We are interested in the limit where the Einst@n acousti¢ r=L2%/(2ym?c). (23
couplings are negligibly small so the restoring forces are
determined by the equilibrium elastic behavior of the modelNote that the zone center singularity is eliminated in the
system. Since the model system is in a solid phase and thgoustic crystal because, s~k at a small wave vector.
system is invariant to uniform translations of the whole sys-Therefore the acoustic crystal correlation time is independent
tem, the restoring force acting on the normal mode ampliof the system size in all dimensions
tudes is —mc2k?u, «(t), where c, represents the long-
wavelength longitudinal and transverse sound spéédbs Dacoustid) ~exp —2ymc?|t|A?). (24)
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TABLE I. The reduced configurational free energy per particle ~ 10°F . .
for hard spheres id=3 dimensions and hard disksd+ 2 dimen- 8 b » Einstein Crystal
sions determined using the acoustic crystal method. The parameter = 104L . 4
L/a is the number of particles along one side of the periodic crystal “E’ o Acoustic CrYStGIA
(triangular in 2D and fcc in 3D N is the number of particles/o = 103k ]
is the ratio of the primitive lattice vector to the particle diametgr, 5 ‘
is the packing fractionf is the reduced free energy, add is the 5 102l ]
uncertainty inf. g : o o

g 10" . .

d La N o n f Af 1 10 100 1000
3 0 0 1.08 0.5878 5.91196 0.00030 L/e
3 0 % 1.09 0.5718 5.53618 0.00016 FIG. 3. The Einstein crystal and acoustic crystal correlation
3 o 0 1.10 0.5563 5.19631 0.00031 times of hard disks X=0) in two dimensions as a function of
3 12 1728 1.10756 0.5450 4.95469 0.00053 system size fom=1.10s. Both axes are dimensionless. The line
3 16 4096 110756 0.5450 4.95647 0.00033 Proportional toL? shows the theoretical scaling of the Einstein
3 24 13824 1.10756 05450 4.95841 0.00018 Crystal correlation time with system sigEq. (23)].
8 * * 110756 0.5450  4.95881  0.00016 ¢, .o contered cubitfce) lattice are about TOMCS for the
3 * * 111 05410 4.88460 0.00032 g i0in crystal method compared to about 50 MCS for the
2 * * 101 0.8890  7.91354  0.00026 5.0 tic crystal method. In two dimensions the effect is more
2 * 102 0.8717 6.51895 0.00029 nronounced because larger linear dimensions are accessible.
2 ® 103 0.8548 5.69855 0.00024 Correlation times on the order of 401CS occur for Ein-
2 o * 1.04 08385 511460 0.00023 stein crystals of 258 256 particles. See Fig. 2 and 3.
2 0 * 105 08226 4.65939 0.00024 Because of the long correlation times and the logarithmic
2 ® ® 1.06 0.8071  4.28540 0.00025 singularity at zero coupling in two dimensions, the uncer-
2 o o 1.07 0.7921 3.96764 0.00025 tainty in the free energy is dominated by a few points near
2 e o 1.08 0.7775 3.69084 0.00010 zero coupling for system sizes greater than about 100
2 o0 o 1.09 0.7633  3.44504 0.00022 Xx100. See Fig. 4. Since the acoustic crystal method does not
2 2 4 1.10 0.7495 2.433 0.003  suffer from this problem, it is a more efficient method for
2 16 256 1.10 0.7495 3.21026 0.00095 large systems.
2 32 1024 1.10 0.7495 3.22056  0.00049 Thermodynamic limit values of the configurational free
2 64 4096 1.10 0.7495 3.22261 0.00025 energy per particle were determined by extrapolatikig
2 128 16384 1.10 0.7495 3.22322 0.00012 —. The leading correction to the free energy is propor-
2 256 65536 1.10 0.7495 3.22328 0.00006 tional to IN. One might expect correction terms of order
2 o o 1.10 0.7495 3.22335 0.00005 IN(N)/N but those appear to be very small. See Fig. 5. The

V. HARD DISK AND HARD SPHERE RESULTS

PHYSICAL REVIEW E 66, 036132 (2002

two-dimensional hard disk thermodynamic limit results are
well fit by the crystal equation of state free enefd,16:

a
We apply the acoustic crystal thermodynamic integration 4 o 1 a
method to systems of hard disks in two dimensions and hard fhard pisk=—IN\ ———=—/ +Cy+Cy| ——1
. i ) . Nepo o
spheres in three dimensions. The results are shown in Table
I. For the largest three-dimensional systemX24ix 24) the a 2
small coupling correlation times of the three-dimensional +C; ;—1 o (25
& 10000 ' 10 4=
g » Einstein Crystal s b
|, Acoustic Crystal ] - .
.E 1000 o AcCOuUsUuC Lrysta _ 10 5 L a . . ]
= = a
c 3 o oo R 2a
._g 100k d 10_6_ 0%o °o°°A ]
% ° » Einstein Crystal .
5 Acoustic Crystal g
8 10 10_7 ’S COLJSI IC rysta I
1 100 0.1 1.0 10.0 100.0

10
L/a

FIG. 2. The Einstein crystal and acoustic crystal correlation

1y

FIG. 4. The statistical uncertainty of the harmonic energy vs

times of hard spheres\&0) in three dimensions as a function of coupling for a 25& 256 system of hard disks in two dimensions
system size foa=1.10s. Both axes are dimensionless. The line with a=1.10r. Both axes are dimensionless. The large and increas-
proportional toL? shows the theoretical scaling of the Einstein ing uncertainty at small coupling for the Einstein crystal is due to

crystal correlation time with system sigBq. (23)].
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3.2260 ' ' The dynamical matrix for a periodic lattice can be diago-
3.2250 nalized in Fourier space and the eigenvectors and eigenval-
= 3.2240 ! ues indexed using the k-space points in the Brillouin zone.
S 3.2230 I ‘ In the eigenproblem
|
~ 3.2220
K,
3.2210 2 Dow(R-RHDPE =maf DK, (A2)
3.2200 . . R o
107° 107% 1073 1072 107! _ )
/N the eigenvector§®*°} form a complete orthonormal set.

Since the eigenvectors corresponding to the vanishing eigen-

_ FIG. 5. The finite-size dependence of the two-dimensional hard a5 represent uniform translations, the eigenvectors have
disk reduced free energy afoc=1.10. The figure shows the dif- the properties

ference between the free energy determined using the acoustic crys-
tal method and the best fit to the foriN) =f..+a, /N. Both axes

are dimensionless. The best fit give@N)=(3.223 35-0.000 05) 2 <I>',§ff’5=0 (A3)
+(—3.1=0.1)/N. The linear dimension of the systems range from R
L/a=8 toL/a=256 (N=64 to N=65536). Any In)/N correc-

tions that might exist are small. and

1
The ratio of the nearest neighbor lattice spacing to the disk ¢'§:a0’s=—5a,s, (A4)
diameter isa/ o= (n,/n)", wheren is the number density N

andng, is the close-packed number density. The best fit to i N o
the data over the range 18h/0<1.10 gives C, Whered,sis the Kronecker delta. The partition function is

=—0.0464-0.0004, C,=-0.80+0.02, and C,=-1.2 NG

+0.2. Early work[16] using thermodynamic integration QQC()\)ZJ 11 duRaexp< — > > ur,D,.(R
through the solid-liquid phase transition to the ideal gas limit Ra ' 2 Rago =7
found Cy=—0.05+0.01 andCy=—0.06+0.02. Equation

(25) fits the thermodynamic limit acoustic crystal free energy “R')Ugs o (A5)
results to within less than 0.001 over the range £6a00 Rial |
=<1.10.
We can use the eigenvectors to perform an orthogonal trans-
ACKNOWLEDGMENTS formation,
| would like to thank Steven Kadlec, James Rainwater, Ug o= Uy (DK (AB)
Peter Monson, Mark Lusk, Leo Radzihovsky, Masami Naka- R.a s ks¥Ra-
gawa, Paul Goldbart, and Dann Frenkel for useful conversa-
tions. The partition function can be rewritten in terms of the vari-
ablesuy .
APPENDIX A
A ABmM -
AC/y ) _ _ 2 n2
The energy of the acoustic crystal can be written using the N (M) = J lk—ls dukysexr{ 2 kzs “’kysukv5> :
dynamical matrix: (A7)

1 For large enough\, one may complete all the Gaussian
Unc=5 > UraDao(R-R)DUr 4, (A1) integrals in Eq.(A7) over the variables associated with the
RR.aa’ nonzero eigenvalues and make only an exponentially small

error:
Theug , variables represent particle distances from the equi-

librium positions in thed Cartesian directions. The dynami- AC . 21

cal matrixD,, ,-(R—R’) has the following properties inde- Qn ()\)=(J I1 dUo,sl>k#0 NBmaZ. (A8)
pendent of whether or not the couplings form a periodic s ° ks

lattice.

The dNXdN dimensional matrix is real and symmetric. The final integral is over the space of alloweq Va'“?ﬂc%f-
Due to the translational symmetry, this variable is propor-

The energy is Invariant under the translation of _aII part'destional to the deviation of the center of mass of the particles
by the same vector displacement. The translational invari;

ance implies thatl of the eigenvalues vanish. The eigenvec-from the center of mass of the lattice positions:
tors associated with the zero eigenvalues describe uniform

1 1 1
translations of all the particles inside tdedimensional pe- usM=— D Uga=—2 2 Uy DKS = —Ug,.
riodic box that encloses the particles. The couplings are cho- N® " NRrR ks = 7 \/ﬁ '
sen so that all other eigenvalues are positive. (A9)
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For a crystal of identical particles the center of mass must bevherek=0,1, ... N—1.

confined to one primitive cell of the lattice to avoid over- In two dimensions the eigenvalues of the dynamical ma-
counting identical configurations. Therefore, the final resulttrix {wi,s} for anN; X N; triangular lattice are given by the
for the acoustic crystal partition function is eigenvalues of the 2 matrices,

v [ 2m 4s,+5,+5S1, \/3(S,—S
QC()‘): NNd/z H - — (A10) wg 17T 527 512 (S2—S12) , (B2)
k#0s Pmawics V3(s-s1)  3(S2+512)
This final result also applies to the fixed center-of-mass Einyherek,=0,1, ... N;,—1 andk,=0,1, ... N;—1,
stein crystal4] in which all the frequency eigenvalues can
be chosen to be unity. N
S, = Sir? (B3)
Ny
APPENDIX B
. . . . ~and
In one dimension the eigenvalues of the dynamical matrix
{w?} for N particles on a periodic ring coupled by springs sir? m(K,—Kp)
with unit spring constant and length of one lattice spacing Sap=Sl N, : (B4)

are
In three dimensions, the eigenvalues of the dynamical matrix
2= 402 Sir? 7T_k (B1) {wﬁ,g} for an N;XN;XN; face centered cubic lattice are
K 0 N/’ given by the eigenvalues of the<33 matrices,

2(s;+S31S1,1S13) 2(s3—S12) 2(s,—S13)
w3 2(s3—s10) 2(sy+ 83+ 815t S23) 2(s1—573) , (BS)
2(s,—513) 2(81—S23) 2(s1+Sy+ 8131 Sp3)

wherek;=0,1,...N;—1,k,=0,1,... N;—1, k3=0,1,... N;—1 ands, ands,gz are defined in Eq¥B3) and(B4).
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